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Abstract— The performance evaluation of various standard passive underw ater target tracking algorithms like Modif ied Gain Bearings-

only Extended Kalman Filter, Parameterized Modif ied Gain Bearings-only Extended Kalman Filter and Particle Filter coupled w ith Modif ied 

Gain Bearings-only Extended Kalman Filter using bearings-only measurements is carried out w ith various scenarios in Monte Carlo 

Simulation. The performance of Parameterized Modif ied Gain Bearings-only Extended Kalman Filter is found to be better than all 

estimates. 

Index Terms—Gain, Kalman Filter, Manoeuvring, Performance, Scenario, Sonar, Target  tracking, 

——————————      —————————— 

1 INTRODUCTION                                                                     

URVEILLANCE is the most important feature of maritime 
warfare and is undertaken by active as well as passive  
sensors. Active methods of surveillance require acoustic 

transmissions to be made by the surveillance platform and 
hence susceptible to interception by others. Thus, in certain 
situations it becomes necessary to maintain silence in active 
mode.    

In the ocean environment, two dimensional bearings-only 
Target Motion Analysis (TMA) is generally used. An ownship 
monitors noisy sonar bearings from a radiating target and 
finds out Target Motion Parameters (TMP) - viz., range, 
course, bearing and speed of the target. The basic assump-
tions are that the target moves at constant velocity most of 
the time and the ownship motion is unrestricted. The target 
and ownship are assumed to be in the same horizontal plane. 
The problem is inherently nonlinear as the measurement is 
nonlinear.  

The determination of the trajectory of a target solely from 
bearing measurements is called Bearings-only Tracking (BOT). 
The BOT area has been widely investigated and numerous 
solutions for this problem  is proposed [1]. In underwater, the 
ownship can be ship or submarine and the target will be ship, 
submarine or torpedo. Hence there will be six types of 
ownship and target scenarios.  

In this paper, the required accuracy in the estimated solu-
tion is assumed. Hence, the purpose of this paper is  perfor-
mance evaluation of Modified Gain Bearings-only Extended  
Kalman Filter (MGBEKF),  Parameterized  Modified Gain Bearings-

only Extended Kalman Filter (PMGBEKF) and Particle Filter  

coupled with Modified Gain Bearings-only Extended Kalman Filter 

(PFMGBEKF) algorithms with respect to accurate convergence 
of the solution. The algorithms are evaluated with the 
scenarios shown in Table 1. 

In scenarios 1, 2 and 3 the ownship is assumed to be sub-
marine and target is assumed to be submarine, ship and tor-
pedo respectively. Similarly in scenarios 4, 5 and 6 the own-
ship is assumed to be ship and target is assumed to be subma-
rine, ship and torpedo respectively. The target range and 
speeds are chosen as per the scenario. It means that  for  
scenario 1, a submarine and submarine encounter, ownship 
speed is considered as 3.09 m/s and target speed as 4.12 m/s 
and initial range as 5 km. In all scenarios the rms error in 
bearing is assumed to be 0.33°. The algorithms are also evalu-
ated to high bearing error (i.e. lower SNR) of the magnitude of 
0.66° rms, as worst condition. In underwater, sometimes  
outliers in the measurements are inevitable. So it is assumed 
that 5% of the measurements are with 5 times of the error that 
is 1.65° (5*0.33°) rms. All these algorithms are evaluated 
against outliers also.  

The algorithms are realised through software and the re-
sults in Monte Carlo simulation are presented. A brief discus-
sion of these algorithms is carried out in section 2. The results 
are presented and the performance evaluation of the algo-
rithms against acceptance criteria is carried out in section 3.  

S 

TABLE 1 
SCENARIOS CHOSEN FOR EVALUATION OF ALGORITHMS 

 

Scenario 

Initial  

Range  

(m) 

Initial  

Bearing 

(deg) 

Target 

Speed 

(m/s) 

O wnship 

Speed 

(m/s) 

Target 

Course 

(deg) 

Submarine 

to  

Submarine 

5000 0 4.12 3.09 135 

Submarine 

to Ship 
20000 0 12.36 3.09 135 

Submarine 

to Torpedo 
18000 0 20.6 3.09 135 

Ship to 

Ship 
20000 0 12.36 12.36 135 

Ship to 

Submarine 
5000 0 3.09 12.36 135 

Ship to 

Torpedo 
20000 0 20.6 12.36 135 
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2 BRIEF DISCUSSION ON PASSIVE TARGET TRACKING   

ALGORITHMS 

2.1 Modified Gain Bearings-only Extended Kalman 
Filter 

The divergence in Extended Kalman Filter (EKF) [2] was elim-
inated by modifying the gain function and this algorithm is 
named as Modified Gain Extended Kalman Filter (MGEKF) 
[3]. The essential idea behind MGEKF is that the nonlinearities 
be ―modifiable‖. By eliminating the direct correlation of the 
gain and measurement noise process in the estimates of 
MGEKF, the bias in the estimation is avoided. A simplified 
version of the modified gain function is available in [4]. 
MGEKF is further modified for underwater applications and 
the algorithm is named as Modified Gain Bearings-only Ex-
tended Kalman Filter (MGBEKF) [5] & [6]. In this paper, 
MGBEKF is used to compare its performance with those other 
standard estimators for passive target tracking application. 
 

2.2 Parameterized Modified Gain Bearings-only 
Extended Kalman Filter 

The work presented in [7] is found interesting. The authors of 
[7] divided the range interval of interest into a number of sub-
intervals following geometric progression and each sub-
interval was dealt with an independent Kalman filter. They 
suggested that this method can be extended to course and 
speed parameterization, if prior knowledge of target course 
and speed respectively are vague. 

In this situation, obtaining fast convergence has an im-
portant role and this is achieved using parameterization. In-
clusion of range, course and speed, parameterization is pro-
posed for MGBEKF to track a torpedo using bearings-only 
measurements. This algorithm is named as Parameterized 
Modified Gain Bearings-Only Extended Kalman Filter 
(PMGBEKF). 

Let the range, course and speed intervals of interest be 
(maximum-range, minimum-range), (maximum-course, min-
imum-course) and (maximum-speed, minimum-speed)  
respectively. The initial weights of each MGBEKF is set to 1/N    
subsequently, the weight of filter i at time k  is given by 

 
 
                                                                                                     (1) 

 
Where   ,ikBp   is the likelihood of measurement B(k) . 
Assuming  Gaussian statistics, the likelihood   ikBp ,                 
can be computed as 
 

(2) 
 

 
Where  1k,kiB̂   is the predicted angle at k  for filter i  and 

2
inv

iσ  is the innovation variance for filter i  given by  
 

              (3) 
 

Where  kH iˆ  is the Jacobian of  nonlinear measurement 
function and  1, kkPi  is the predicted covariance for filter 

i . Let the state estimate of filter i  be  kkX i ,ˆ  and its associ-
ated covariance be  kkPi , , then the combined estimate of 
PMGBEKF is computed using the Gaussian mixture formulas 
[8] as follows. 
 

                 (4)                                                             
 

 
 

 
(5) 

 

2.3 Particle Filter coupled with Modified Gain Bearings-
only Extended Kalman Filter using Bearings-only 
measurements 

Particle filter is combined with the MGBEKF and the algo-
rithm is named as Particle Filter[12] coupled with Modified 
Gain Bearings-only Extended Kalman Filter (PFMGBEKF). In 
this approach, each particle is updated at the measurement 
time using the MGBEKF and then resampling (if required) is 
performed using the measurement. This is like running a bank 
of Kalman filters (one for each particle) initialized with ran-
domly chosen state vectors  and then adding a resampling 
step (if required) after each measurement. 

After  k1,kSX   is obtained, it can be refined using the 

MGBEKF measurement-update equations. 

     k1,kSX   is updated to  1k1,kSX   according to the 

following MGBEKF equations [9]. 

(6) 

             
 

(7) 
 

 
      

  
(8) 

 

 

   i1kGi1kGσ T2
B   

(9) 
                                                                                                          

Where  1kG   is Kalman gain,  k1,kP   is a priori estima-
tion error covariance for the thi  particle and g(.)  is modified 
gain function g(.) is given by 

(10) 
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Since true bearing is not available in practice, it is replaced by 
the measured bearing to compute the function  .g . In this 
paper, PFMGBEKF is used to compare its performance with 
those other standard estimators for passive target tracking 
application. 

3 SIMULATION AND RESULTS 

Simulator is developed to create target, ownship and meas-
urements. It is assumed that the ownship is at the origin and 
bearing is considered with respect to Y-axis, 0-360° and clock-
wise positive. Target and ownship movements are updated at 
every second. All one second samples are corrupted by addi-
tive zero mean Gaussian noise. It is assumed that the bearing 
measurements are available continuously at every second. The 
ownship is assumed to be carrying out S-manoeuver with a 
turning rate of 1°/s. The ownship moves initially at a course 
of 90° for a period of 2 min and then it changes to course 270°. 
At 9th, 16th and 23rd min, the ownship changes its course 
from 270-90°, 90-270° and 270-90° respectively. The experi-
ment is conducted for 1000 s. 
 
3.1 Initialization of State Vector and its Covariance 

Matrix 

Let the Sonar Range of the Day (SRD) be 20 km that means 
sonar can detect the ship at the range of maximum 20 km on 
that particular day. Using this information in MGBEKF, and 
PFMGBEKF, target state vector position components are ini-
tialized with 20 km. As the velocity components of the target 
are not available, these are each assumed as 10 m/s.  (It is 
known that the submarine target moves at around 3 m/s and 
torpedo moves at around 17 m/s. As same algorithm is to be 
used to track ship, submarine and torpedoes, average speed of 
the underwater vehicles is considered). In PF, it is observed 
that around 10,000 particles are necessary to obtain good r e-
sults. When PF is combined with MGBEKF, 1000 particles are 
sufficient to get the required accuracy in the solution. (It is also 
seen that by increasing the particles to 10,000 there is no im-
provement in accuracy of the solution). In PMGBEKF, the 
range, course and speed sets contain 3-20 km, 0-359° and 3-20 
m/s respectively. The elements of range, course and speed sets 
follow geometric progression. It is assumed that initialized 
target state vector follows Uniform Density Function. Accord-
ingly the covariance matrix of initial target state vector com-
ponents is derived for MGBEKF, UKF and PFMGBEKF. In case 
of MPEKF, it is assumed that the variance of course and speed 
are 0.5° and 0.1 m/s respectively and the covariance matrix is 
derived as given in [10]. 

 
3.2 Performance Evaluation of the Algorithms 

It is assumed that the TMP are said to be converged when the  
error in the range, course and speed estimates are less than or 
equal to 10% of the actual range, 5º of the actual course and 
20% of the actual speed respectively.  As mentioned earlier, in 
PFMGBEKF-1000 KF’s are used. In PMGBEKF range, course 
and speed sets with 5 elements (in geometric progression) 
each are used and so 125 KF’s work in parallel. 

Though it takes more execution time when compared to 

other algorithms and less execution time with that of 
PFMGBEKF, execution time is not considered to select as 
right algorithm for passive target tracking as mentioned ear-
lier. The convergence time to obtain the range, course and 
speed estimates together with the required accuracies using 
each algorithm in each scenario is shown in Table 1. From the 
results obtained, it is evident PMGBEKF estimates the solu-
tion faster when compared to that of other estimators. For 
robustness PMGBEKF is tested for the following cases namely 
–lower SNR and outliers. For the purpose of presentation of 
the results the bearing error is increased from 0.33 º to 0.66 º 
rms in scenario 1 and the results obtained are shown in Table 
3. It is assumed that 5% outliers in underwater do exist and so 
5% of the measurements are randomly chosen with 1.65º 
(5*0.33) rms error. Again Scenario 1 is chosen with outliers and 
the results obtained are shown in Table 2. 

3.3 Detailed Analysis 

Scenario 1 is chosen for presentation of the results in detail. 
The convergence time for range, course and speed estimates 
with 0.35°rms, 0.66°rms and 5% outliers with 1.65°rms error in 
bearing measurements is shown in Table 2. The estimates of 
range, course and speed when the error is 0.33°rms in bearing 
measurements are plotted with respect to time in Fig. 1., Fig. 2. 
and Fig. 3. respectively. 
 

TABLE 3 
CONVERGENCE TIME IN SECONDS FOR RANGE, COURSE AND 

SPEED ESTIMATES FOR SCENARIO 1 

RMS Error 
 in Bearing 

 (deg) 

 
Target 

parameters 

MGB 
EKF 

PMGB 
EKF 

PFMGB 
EKF 

0.33 

Range 309 245 300 

Course 461 362 408 

Speed 411 301 400 

0.66 

Range 399 256 401 

Course 510 430 458 

Speed 430 315 410 

5% outliers with 
1.65 

Range 319 246 360 

Course 474 385 429 

Speed 418 306 403 

TABLE 2 
CONVERGENCE TIME OF VARIOUS ALGORITHMS IN SECONDS  

Scenario 

RMS Error 

in Bearing,  

(deg) 

MGB 

EKF 

PFMGB 

EKF 

PMGB 

EKF 

1 

0.33 461 408 362 

0.66 512 458 430 

5% outliers 

with 1.65 
474 429 385 

2 0.33 582 519 385 

3 0.33 301 248 280 

4 0.33 520 390 380 

5 0.33 400 412 300 

6 0.33 411 450 360 
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4  CONCLUSION 

In underwater, the ownship can be ship or submarine and the target 

will be submarine, ship or torpedo. Hence there will be six types of 

ownship and target scenarios as shown in Table 1. Various passive 

target tracking algorithms shown in Table 2 are considered for com-

parative study of performance evaluation of algorithms with respect 

to convergence of the solution. For robustness, the algorithms are 

tested against at low SNR and with outliers . Simulation is carried 

out and the results are presented in Table 2. It is observed that 

PMGBEKF generates the solution faster when compared to that 

of other estimators.    

       From the performance of  MGBEKF algorithm it is observed 

that MGBEKF generates solution faster with few samples when 

compared to that of other Algorithms. Similar statement is also re-

ported in [11]. It is difficult to say which is better algorithm. But, 

undoubtedly PMGBEKF generates the solution faster. In PMGBEKF 

solution converges at around 330 ± 50 s for all types of scenarios 

because of parameterization in target state vector. 
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Fig. 1. Estimated Ranges of MGBEKF, PMGBEKFand PFMGBEKF 
Algorithms 

 

 

Fig. 2. Estimated Courses of MGBEKF, PMGBEKF and 
PFMGBEKF Algorithms 

 

 

Fig. 3. Estimated Speeds of MGBEKF, PMGBEKF and PFMGBEKF 
Algorithms 
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